# Vitamin E<sup>10</sup> 400 IU

Vitamin E is a fat-soluble antioxidant that plays a crucial role in protecting cell membranes from oxidative damage. It consists of eight naturally occurring compounds: four tocopherols ( $\alpha$ ,  $\beta$ ,  $\gamma$ ,  $\delta$ ) and four tocotrienols ( $\alpha$ ,  $\beta$ ,  $\gamma$ ,  $\delta$ ). *alpha*-Tocopherol is the most biologically active form in humans.

## **Mechanism of Action**

Vitamin E acts as an antioxidant by neutralizing free radicals and preventing lipid peroxidation. It also plays a role in immune function, gene expression, and cell signaling. Tocotrienols exhibit additional benefits, such as modulating cholesterol synthesis and providing neuroprotective effects.

## **Health Benefits**

**Natural vitamin E (D***-alpha***-tocopherol)** is a potent antioxidant that protects cells from oxidative damage, supports cardiovascular health by preventing LDL oxidation, enhances immune function, and promotes skin health by reducing inflammation and UV damage.

**Mixed tocopherols** from non-GMO soy provide broad antioxidant support, protecting LDL cholesterol, supporting blood vessels, and reducing inflammation. *gamma-* and *delta-*tocopherols are especially effective against nitrogen-based free radicals and offer cardiovascular and anti-inflammatory benefits.

**Free plant sterols** from non-GMO soy aid cholesterol management by reducing dietary cholesterol absorption, lowering LDL, and promoting healthy lipid levels. *beta*-Sitosterol supports cholesterol

**Clinical Studies with Vitamin E** 



balance and prostate health, while campesterols and stigmasterols enhance lipid-lowering and anti-inflammatory effects.

**Tocotrienols** from non-GMO palm fruit provide superior lipid protection, support brain and cardiovascular health, reduce arterial stiffness, and protect against UV-induced skin damage. *gamma-* and *delta-*tocotrienols are particularly effective in modulating cholesterol synthesis and inflammation.

**Squalene** from olive (*Olea europaea*) boosts skin hydration and elasticity, and they repair while providing antioxidant protection and supporting immune function.

## **Therapeutic Uses**

This formula provides synergistic antioxidant and anti-inflammatory support for cardiovascular, skin, and immune health. Vitamin E may also help with deficiency, exercise-induced muscle damage, PMS symptoms, abnormal pregnacy or recurring miscarriage, Alzheimer's, vision changes, and nonalcoholic steatohepatitis (NASH).

#### **Participants** Study Type Treatment Results **Clinical Implications** Ref. **Immune Function** Double-blind, The TRF group showed higher Healthy women 400 mg tocotrienol-rich TRF has immunostimulatory 1 placebo-(n = 108) aged fraction (TRF) compared to production of interferon-y, effects and potential clinical controlled between 18 and placebo for 56 days. Blood IL-4, and anti-TT IgG and benefits to enhance immune clinical trial. 25. samples were collected on lower IL-6 levels (p < 0.05) response to vaccines. days 0, 28, and 56. On day compared to the placebo 28, all participants received group. a tetanus toxoid (TT) vaccine (20 Lf\*) intramuscularly.

\* Lf = limit of flocculation

The first company in the industry to have invested in an ISO 17025–accredited laboratory to test for identity, potency, oxidation, disintegration, purity, and more.





| Study Type                                                                                                                        | Participants                                                                                                                                                 | Treatment                                                                                                                                                                                                                                                                                                                                               | Results                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>Clinical Implications</b>                                                                                                                                                                                                                                                                         | Ref. |
|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Secondary<br>analysis of<br>the Alpha-<br>Tocopherol,<br>Beta-Carotene<br>Cancer<br>Prevention<br>Study in Finland,<br>1985–1993. | Participants were<br>male smokers<br>aged 50–69 years<br>at the baseline<br>who started to<br>smoke at $\geq$ 21<br>years ( <i>n</i> = 7,469).               | Intervention was 50 mg/d of<br>vitamin E for 5–8 years. The<br>outcome was the incidence of<br>hospital-treated, community-<br>acquired pneumonia by the<br>age at the follow-up.                                                                                                                                                                       | Vitamin E reduced pneumonia<br>incidence by 69% in those<br>smoking 5–19 cigarettes<br>per day who exercised (95%<br>CI: 43%–83%) and by 72%<br>in those who quit smoking<br>(95% CI: 31%–89%). Among<br>heavy smokers (≥ 20 cigarettes<br>per day) or nonexercisers,<br>pneumonia incidence was 14%<br>lower (95% CI: -38% to +21%).                                                                                    | Strong evidence shows<br>vitamin E reduces pneumonia<br>risk in elderly males,<br>especially moderate smokers<br>who exercise and former<br>smokers, making it a potential<br>preventive measure.                                                                                                    | 2    |
|                                                                                                                                   |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                         | ular Health                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                      |      |
| Double-blinded,<br>placebo-<br>controlled<br>clinical trial.                                                                      | 353 men and<br>women ≥ 40<br>years old with<br>LDL cholesterol<br>(LDL-C)<br>≥ 3.37 mmol/L<br>(130 mg/dL) and<br>no clinical signs<br>or symptoms of<br>CVD. | Eligible participants<br>were randomized to<br>DL-a-tocopherol (400 IU/d) or<br>placebo and followed every<br>3 months for an average of<br>3 years. The primary trial<br>endpoint was the rate of<br>change in the common carotid<br>artery far-wall intima-media<br>thickness (IMT) assessed by<br>computer image-processed<br>B-mode ultrasonograms. | Compared with placebo,<br>a-tocopherol supplementation<br>significantly raised plasma<br>vitamin E levels ( $p < 0.0001$ ),<br>reduced circulating oxidized<br>LDL ( $p = 0.03$ ), and reduced<br>LDL oxidative susceptibility<br>( $p < 0.01$ ).                                                                                                                                                                        | While a-tocopherol<br>supplementation boosted<br>vitamin E levels and reduced<br>oxidative stress markers, it<br>did not slow IMT progression<br>over three years. It may be<br>useful for antioxidant support<br>but is not effective alone in<br>preventing cardiovascular<br>disease progression. | 3    |
| Double-blind,<br>placebo-<br>controlled study<br>with stratified<br>randomization.                                                | 2,002<br>patients with<br>angiographically<br>proven coronary<br>atherosclerosis<br>were enrolled and<br>followed up for<br>a median of 510<br>days.         | 1,035 patients were assigned<br>a-tocopherol (capsules<br>containing 800 IU/d for the<br>first 546 patients; 400 IU/d for<br>the remainder); 967 received<br>identical placebo capsules.<br>The primary endpoints were a<br>combination of cardiovascular<br>death and nonfatal MI as well<br>as nonfatal MI alone.                                     | a-Tocopherol treatment<br>significantly reduced the risk<br>of cardiovascular death and<br>nonfatal MI (41 v. 64 events;<br>relative risk 0.53, $p = 0.005$ ),<br>primarily by lowering<br>nonfatal MI risk (14 v. 41,<br>p = 0.005)                                                                                                                                                                                     | a-Tocopherol reduced nonfatal<br>MIs in patients with coronary<br>atherosclerosis, with benefits<br>seen after one year. However,<br>the potential increase in<br>cardiovascular deaths<br>suggests it should be part of a<br>broader treatment approach.                                            | 4    |
|                                                                                                                                   | •                                                                                                                                                            | Neurologio                                                                                                                                                                                                                                                                                                                                              | al Support                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                      |      |
| Double-blind,<br>placebo-<br>controlled,<br>randomized<br>clinical trial.                                                         | 60 men and<br>women,<br>cognitively<br>healthy<br>individuals aged<br>≥ 65 years.                                                                            | 1 g/d fish oil (430 mg<br>docosahexaenoic acid, 90 mg<br>eicosapentaenoic acid), 22 mg<br>carotenoids (10 mg lutein,<br>10 mg <i>meso-</i> zeaxanthin, 2 mg<br>zeaxanthin), and 15 mg<br>vitamin E or placebo for 24<br>months                                                                                                                          | After 24 months of<br>supplementation, the active<br>group ( $n = 30$ , mean age 69.03)<br>made fewer errors in working-<br>memory tasks than the<br>placebo group ( $n = 30$ , mean<br>age 69.77), with effect sizes<br>ranging from 0.090 to 0.105.<br>The active group performed<br>better as task difficulty<br>increased.                                                                                           | These results support a<br>biologically plausible rationale<br>whereby these nutrients<br>work synergistically, and in<br>a dose-dependent manner, to<br>improve working memory<br>in cognitively healthy older<br>adults.                                                                           | 5    |
| Population-<br>based,<br>prospective<br>cohort study in<br>the Netherlands.                                                       | 5,395 participants,<br>aged 55+ years,<br>who were free<br>of dementia and<br>provided dietary<br>information at<br>study baseline.                          | Incidence of dementia and<br>Alzheimer's disease (AD),<br>based on internationally<br>accepted criteria, relative to<br>dietary intake of vitamin E,<br>vitamin C, <i>beta</i> -carotene, and<br>flavonoids.                                                                                                                                            | Over a 9.6-year follow-up,<br>higher vitamin E intake at<br>baseline was associated with<br>a 25% lower risk of dementia,<br>with those in the highest<br>tertile being less likely to<br>develop dementia (hazard<br>ratio 0.75, $p = 0.02$ ). No similar<br>association was found for<br>vitamin C, <i>beta</i> -carotene, or<br>flavonoids. These results were<br>consistent for Alzheimer's<br>disease specifically. | Higher intake of foods rich<br>in vitamin E may modestly<br>reduce long-term risk of<br>dementia and AD.                                                                                                                                                                                             | 6    |

| Study Type                                                                | Participants                                                                                                                                                                                                         | Treatment                                                                                                                                                                                                                                               | Results                                                                                                                                                                                                                                                                                                                                                                        | <b>Clinical Implications</b>                                                                                                                                                                                                                                              | Ref. |
|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|                                                                           |                                                                                                                                                                                                                      | Endometric                                                                                                                                                                                                                                              | osis and PMS                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                           |      |
| Randomized,<br>triple-blind,<br>placebo-<br>controlled<br>clinical trial. | 60 reproductive-<br>aged (15–45 years)<br>women with<br>pelvic pain. They<br>had 1–3 stages<br>of laparoscopic-<br>proven<br>endometriosis.                                                                          | Randomized to group A<br>( <i>n</i> = 30), given vitamin C<br>(1,000 mg/d, 2 tablets of<br>500 mg each) and vitamin E<br>(800 IU/d, 2 tablets of 400 IU<br>each) combination, or group B<br>( <i>n</i> = 30), given placebo pills<br>daily for 8 weeks. | After 8 weeks of<br>supplementation in vitamins<br>C and E, the treatment group<br>showed a significant reduction<br>in malondialdehyde (MDA)<br>and reactive oxygen species<br>(ROS) compared to the placebo<br>group. Pelvic pain ( $p < 0.001$ ),<br>dysmenorrhea ( $p < 0.001$ ),<br>and dyspareunia ( $p < 0.001$ )<br>significantly decreased in the<br>treatment group. | The intake of vitamin C<br>and vitamin E supplements<br>effectively reduced<br>dysmenorrhea severity and<br>improved dyspareunia and<br>severity of pelvic pain.                                                                                                          | 7    |
| Randomized,<br>double-blind,<br>controlled trial.                         | 86 women<br>completed<br>the PMS Daily<br>Symptoms Record<br>for 2 months and<br>were randomly<br>assigned to two<br>intervention<br>groups and one<br>control group.                                                | The groups received either<br>a tablet containing 200 mg<br>vitamin D, 100 mg vitamin E,<br>or a placebo each day. After<br>2 months, the results of pre-<br>and postintervention were<br>compared.                                                     | Supplemental therapy with<br>vitamins D and E was an<br>effective and affordable<br>treatment for PMS, with<br>vitamin E showing slightly<br>greater effectiveness than<br>vitamin D and placebo in<br>reducing symptoms, though<br>no significant difference was<br>found between the three<br>groups.                                                                        | According to this study,<br>vitamins D and E are an<br>effective and affordable<br>treatment for PMS. All<br>compounds used in the<br>current study had no side<br>effects, were effective,<br>nonsynthetic, and acceptable<br>by most groups of women in<br>the society. | 8    |
|                                                                           |                                                                                                                                                                                                                      | Male In                                                                                                                                                                                                                                                 | fertility                                                                                                                                                                                                                                                                                                                                                                      | •                                                                                                                                                                                                                                                                         |      |
| Double-blind,<br>placebo-<br>controlled,<br>randomized<br>study.          | 101 couples<br>(50 in the<br>vitamin E group<br>and 51 in the<br>placebo group)<br>undergoing IVF<br>(64.4% of cases<br>had an abnormal<br>spermiogram<br>according to<br>World Health<br>Organization<br>criteria). | Vitamin E (a-tocopherol,<br>400 mg/d for 3 months) with<br>sperm analysis performed<br>immediately before starting<br>the treatment and 3 months<br>later on the day of IVF.                                                                            | Sperm motility was higher<br>in the vitamin E group, but<br>not statistically significant.<br>Clinical pregnancy and<br>implantation rates were also<br>higher but not significant.<br>However, the live birth rate<br>per transfer was significantly<br>higher.                                                                                                               | Authors suggest that other<br>positive changes adopted<br>by the men in both groups<br>attributed to the lack of<br>statistical significance<br>(Hawthorne effect). Other<br>than antioxidant, other<br>possible mechanisms are<br>on cellular responses and<br>survival. | 9    |
|                                                                           |                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                       | ndometrial Thickness                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                           |      |
| Randomized<br>control trial.                                              | 103 women<br>undergoing<br>ovarian<br>stimulation with<br>clomiphene<br>citrate.                                                                                                                                     | Group A ( $n = 53$ ) with<br>vitamin E and group B ( $n = 50$ )<br>without.                                                                                                                                                                             | Difference in endometrial<br>thickness between groups<br>was significant ( <i>p</i> = 0.001).<br>Implantation and pregnancy<br>rates did not differ.                                                                                                                                                                                                                           | Vitamin E may improve<br>endometrial response via<br>antioxidant, anticoagulant<br>(increasing blood supply to<br>follicles and endometrium),<br>and antiestrogenic effects,<br>especially in women with thin<br>endometrium.                                             | 10   |
| Randomized<br>control trial.                                              | 280 individuals<br>undergoing<br>intracytoplasmic<br>sperm injection<br>(ICSI)                                                                                                                                       | Supplementation with<br>pentoxifylline (PTX, 400 mg<br>twice daily) and vitamin E<br>(tocopherol, 400 IU twice<br>daily) ( $n = 140$ ) versus control<br>(without) ( $n = 140$ ).                                                                       | After 3 months, endometrial<br>thickness was significantly<br>higher in the treatment group<br>(p < 0.001), and pregnancy<br>rate was significantly better<br>in the treatment group versus<br>control (51% v. 40%, $p = 0.003$ ).                                                                                                                                             | Endometrial thickness<br>attributed to anticoagulant<br>action of vitamin E, increasing<br>blood flow to endometrium.                                                                                                                                                     | 11   |

| Study Type     | Participants                   | Treatment                                                                                       | Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>Clinical Implications</b>            | Ref. |  |  |
|----------------|--------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------|--|--|
|                | PCOS                           |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |      |  |  |
| Meta-analysis. | 10 RCTs with 504 participants. | Vitamin E supplementation,<br>vitamin E in combination with<br>omega-3, or magnesium on<br>PCOS | Vitamin E supplementation or<br>vitamin E in combination with<br>omega-3 or magnesium in<br>comparison to placebo could<br>significantly reduce serum<br>levels of TG, VLDL, LDL-c,<br>TC, TC/HDL-c ratio, hs-CRP,<br>and hirsutism score, and<br>significantly increase nitric<br>oxide levels (2.79 µmol/L, 95%<br>CI 0.79-4.79). No significant<br>effect was found on HDL-c,<br>glycemic indices, hormonal<br>profile, anthropometric<br>measurements, and other<br>biomarkers of inflammation<br>or oxidative stress. | Antioxidant and lipid-lowering effects. | 12   |  |  |

### References

- Mahalingam, D., A.K. Radhakrishnan, Z. Amom, N. Ibrahim, and K. Nesaretnam. "Effects of supplementation with tocotrienol-rich fraction on immune response to tetanus toxoid immunization in normal healthy volunteers." *European Journal of Clinical Nutrition*, Vol. 65, No. 1 (2011): 63–69.
- Hemilä, H. "Vitamin E administration may decrease the incidence of pneumonia in elderly males." *Clinical Interventions in Aging*, Vol. 11 (2016): 1379–1385.
- Hodis, H.N., W.J. Mack, L. LaBree, P.R. Mahrer, A. Sevanian, C.-R. Liu, C.-H. Liu, J. Hwang, R.H. Selzer, and S.P. Azen; VEAPS Research Group. "Alpha-tocopherol supplementation in healthy individuals reduces low-density lipoprotein oxidation but not atherosclerosis: The Vitamin E Atherosclerosis Prevention Study (VEAPS)." *Circulation*, Vol. 106, No. 12 (2002): 1453–1459.
- Stephens, N.G., A. Parsons, P.M. Schofield, F. Kelly, K. Cheeseman, and M.J. Mitchinson. "Randomised controlled trial of vitamin E in patients with coronary disease: Cambridge Heart Antioxidant Study (CHAOS)." *Lancet*, Vol. 347, No. 9004 (1996): 781–786.
- Power, R., J.M. Nolan, A. Prado-Cabrero, W. Roche, R. Coen, T. Power, and R. Mulcahy. "Omega-3 fatty acid, carotenoid and vitamin E supplementation improves working memory in older adults: A randomised clinical trial." *Clinical Nutrition*, Vol. 41, No. 2 (2022): 405–414.
- Devore, E.E., F. Grodstein, F.J.A. van Rooij, A. Hofman, M.J. Stampfer, J.C.M. Witteman, and M.M.B. Breteler. "Dietary antioxidants and long-term risk of dementia." Archives of Neurology, Vol. 67, No. 7 (2010): 819–825.
- Amini, L., R. Chekini, M.R. Nateghi, H. Haghani, T. Jamialahmadi, T. Sathyapalan, and A. Sahebkar. "The effect of combined vitamin C and vitamin e supplementation on oxidative stress markers in women with endometriosis: A randomized, tripleblind placebo-controlled clinical trial." *Pain Research & Management*, Vol. 2021 (2021): 5529741.
- Dadkhah, H., E. Ebrahimi, and N. Fathizadeh. "Evaluating the effects of vitamin D and vitamin E supplement on premenstrual syndrome: A randomized, double-blind, controlled trial." *Iranian Journal of Nursing and Midwifery Research*, Vol. 21, No. 2 (2016): 159–164.
- Matorras, R., J. Pérez-Sanz, B. Corcóstegui, I. Pérez-Ruiz, I. Malaina, S. Quevedo, F. Aspichueta, et al. "Effect of vitamin E administered to men in infertile couples on sperm and assisted reproduction outcomes: a double-blind randomized study." F&S Reports, Vol. 1, No. 3 (2020): 219–226.
- Cicek, N., O.G. Eryilmaz, E. Sarikaya, C. Gulerman, and Y. Genc. "Vitamin E effect on controlled ovarian stimulation of unexplained infertile women." *Journal of Assisted Reproduction and Genetics*, Vol. 29, No. 4 (2012): 325–328.
- El Nashar, A., K. Salama, A. El-Deen, and A. Fayez. "Effects of pentoxifylline and vitamin E on pregnancy rate in infertile women treated by ICSI: A randomized clinical trial." *Benha Journal of Applied Sciences*, Vol. 5, No. 3, Pt. 1 (2021): 1–6.
- Heidari, H., Z. Hajhashemy, and P. Saneei. "A meta-analysis of effects of vitamin E supplementation alone and in combination with omega-3 or magnesium on polycystic ovary syndrome." *Scientific Reports*, Vol. 12 (2022): 19927.

## Each softgel contains:

| Natural vitamin E (D-alpha-tocopherol)                      |
|-------------------------------------------------------------|
| (from non-GMO sunflower) (400 IU) 268 mg AT                 |
| Free plant sterols (from non-GMO soy) 20 mg                 |
| (including 8 mg <i>beta</i> -sitosterol, 4 mg campesterols, |
| and 4 mg stigmasterols)                                     |
| Tocotrienols (from non-GMO palm fruit) 3.16 mg              |
| D-alpha-Tocotrienols 24–30%                                 |
| beta-Tocotrienols                                           |
| gamma-Tocotrienols 30–46%                                   |
| delta-Tocotrienols 10–20%                                   |
| Squalene (Olea europaea) 45 mg                              |
| Mixed tocopherols (from non-GMO soy) 53 mg                  |
| D-alpha-Tocopherol                                          |
| beta-Tocopherols 0.5–2%                                     |
| gamma-Tocopherols 45–60%                                    |
| delta-Tocopherols 13–25%                                    |
|                                                             |

Nonmedicinal ingredients: Organic sunflower oil, sunflower lecithin, and yellow beeswax in a softgel of natural annatto extract (in sunflower oil), bovine gelatin, glycerin, and purified water.

**Directions of use: Adults:** Take 2 softgels daily with food or as directed by your health-care practitioner.

**Cautions and warnings:** Consult a health-care practitioner prior to use if you are pregnant or breast-feeding; if you have cancer; if you have cardiovascular disease or diabetes; or if you are taking blood thinners.

Product #1094 · 60 softgels · NPN 80065142 · V0316-R5

# 3405, F.-X.-Tessier street, Vaudreuil-Dorion (Québec), J7V 5V5 · 1 888 863 9274 · vitazan.com